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Abstract-In fully developed flows and temperature fields between two horizontal flat plates (when the 
lower plate is heated and the upper one is cooled), the phenomenon might be considered to be two-dimen- 
sional. However, when the temperature difference between these flat plates is increased above a critical 
value, vortex rolls with their axes parallel to the flow direction are observed to appear between the flat 
plates. Consequently, the flow and temperature fields are completely affected by these vortex roils and 
have a three-dimensional character. The momentum and energy equations for such tields are non-linear. 
These equations are solved approximately on the basis of energy and entropy production balance of 
vortex rolls. In order to ascertain theoretical results, the velocity and temperature distributions of the three- 
dimensional flow are measured. It is found that theoretical results are in good agreement with experimental 

NOMENCLATURE 
to-ordinate parallel to the main fiow 
direction (see Fig. 1) ; 
co-ordinate normal to the horizontal 
flat plates (see Fig. 1) ; 
co-ordinate parallel to the horizontal 
flat plates and normal to the main 
flow direction (see Fig. 1) ; 
velocity component in the x-direction ; 
velocity component in the y-direction ; 
velocity component in the z-direction ; 
maximum value of the fully developed 
velocity profile with no vortex rolls; 
pressure ; 
density ; 
kinematic viscosity ; 
specific heat of fluid at constant pres- 
sure ; 
heat conductivity; 
temperature ; 
surface temperature of the heated 
horizontal flat plate (constant); 
surface temperature of the cooled 
horizontal flat plate (constant); 
temperature difference, T, - T,; 
heat transfer from the lower to the 
upper flat plate ; 
coefficient of thermal expansion ; 

results. 

$7, acceleration due to gravity ; 

4 thickness of the passage ; 

4 pitch of vortex rolls ; 

Re, Reynolds number, Uod/v ; 

Pr, Prandtl number, pvC,,/k ; 

Gr, Grashof number, &ATd3/vZ ; 

Ra, Rayleigh number, Pr . Gr ; 

@a, Nusselt number, q~~kAT ; 

1. INTRODUCTION 

CONSIDER a flow between two horizontal flat 
plates, where the lower plate is heated isotherm- 
ally and the upper one is cooled isothermally. 
When the temperature difference between these 
flat plates is small and the flow and temperature 
fields are fully developed in the flow direction, 
the profiles of velocity and temperature distribu- 
tions are respectively parabolic and linear. In 
the following, such a state of flow is called the 
main stream. 

When the temperature difference between the 
horizontal flat plates is increased above a 
critical value, longitudinal vortex rolls appear 
in the passage. The flow pattern is completely 
affected by these vortices. These vortices are 
generated by buoyancy. The fluid motion in a 
closed horizontal fluid layer which is heated 
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from below was lirst analysed by Lord Rayleigh 
and has since been studied by many researchers. 
Recently, analytical and experimental work on 
this problem has been done by Malkus [l, 23. 
He intended to explain the nature of turbulence 
using the mechanism of convective cells caused 
by buoyancy. However, no quantitativemeasure- 
ment for such a convective cell has been made, 
because the cellular motion is too unstable to 
be measured. The low velocity of the cellular 
motion has also made it difficult to measure 
the velocity distribution. 

In this study, the obstacle is removed by the 
existence of the main stream, and quantitative 
measurements are made. Experimental results 
are compared with analytical results and a 
fairly good agreement is obtained. 

Usually, a flow between two horizontal flat 
plates is treated as a two-dimensional phenome- 
non and the three-dimensional character caused 
by vortex rolls is notconsidered. The flow can be 
treated as a two-dimensional phenomenon only 
when the temperature difference between the 
flat plates is small. In the case of a finite tempera- 
ture difference, which is important practically, 
vortex rolls appear in the passage and the heat 
transfer from the lower to the upper plate 
increases. If the temperature difference is in- 
creased further, the vortex rolls split and the 
size of each roll decreases. Eventually, the 
regularity of the fluid motion disappears and 
turbulence occurs. 

Consider the mechanism of such a vortex 
roll. If we observe one vortex roll, it is known 
that it absorbs (a) energy introduced into the 
vortex roll by buoyancy, (b) energy introduced 
into the vortex roll from the main stream by 
the Reynolds stress, and (c) energy introduced 
into the vortex roll from larger-scale vortex 
rolls by the interaction of vortex rolls. These 
energies are balanced by (a) energy transferred 
from this roll to smaller-scale vortex rolls and 
(b) energy dissipated by viscosity. There seems 
to exist a resemblance between this mechanism 
and the turbulent flow mechanism. Therefore, 
the object of this report is not only to consider 

the effect of buoyancy on the forced convective 
heat transfer, but also to clarify the basic 
concept of turbulence by means of the analogy 
which exists between a discrete vortex roll 
system and turbulence. 

2. ANALYSIS 
2.1 Basic equations 

The co-ordinate system is indicated in Fig. 1. 
Dividing velocity, length, temperature and pres- 
sure by U,, d, AT, and p,U& respectively, we 

Y 

t 

Heoted flat pbte 

FIG. 1. The co-ordinate system. 

obtain non-dimensional expressions, where the 
suffix s means the standard state. Then, 

(u,v,w) = u&*,E’*,w*), 

(x,y,z) = db*,Y*J*), T = AT.T*, 

T, = AT. T:, T, = AT.T;, 

P = p,iJ; . p*. 

Having made this change, all stars will now be 
dropped. In the remainder of this report all 
unstarred quantities are non-dimensional unless 
it is otherwise stated. 

Let us consider a steady fully developed flow 
in the x-direction and assume that fluid proper- 
ties except p are always independent of tem- 
perature. Moreover, we assume that the density 
variation due to the temperature difference 
appears only in one term where p is multiplied 
by g. This variation is indicated approximately 
as 

/>.(I = t),,; 1 - (r AT(T - r,)l y. 

Velocity. pressure and temperature are written 
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as follows : 

u = ii(y) + u’(y,z) 

V= u’(y,z) 

w= w’(y,z) (1) 

P = H(x,y) + p’(y,z) 

T = T(y) + T’(y,z) I 

In contrast to the time mean in a turbulent 
flow, the bars in equation (1) indicate a mean 
value taken over the z-direction. Terms with 
bars and primes indicate mean values and 
fluctuation components, respectively. All fluctua- 
tion components have a periodicity in the 
z-direction and their mean values over one 
pitch reduce to zero. That is, 

~=~======7”Oo. 

Substituting equation (1) into the Navier- 
Stokes equation and the energy equation, 
neglecting pressure and dissipation terms and 
making use of the characteristics of fluctuation 
components, we obtain equations for the mean 
flow and fluctuation components. In the above 
process, we put the pressure gradient aPjax 
equal to the well-known value, -8/Re, which 
corresponds to a two-dimensional channel flow. 

The equations for the fluctuation components 
are 

au’ ; awl- 0 

ay aZ 

, au , ad , ad au’v’ 
v~+v&+wZ- ay 

+._($+!g) (3) 

ad ad av'2 apI 
v’-++w’_----_ __ 
ay aZ ay ay 

(5) 
3F 

aT , aT’ , aT’ I av'T -_ v’dy+V&+WaZ ay 

=&-f$+$) (6) 

The equations for the mean stream are 

I auv 8 i a% 
p=Re+-Z ay Re ay 

(7) 

aliT’ i a*T 
-=PrReay2 ay 

Equations (2) to (8) are non-linear and cannot 
be solved exactly. Therefore, we solve these 
equations approximately by the following 
method. In the first place, these equations are 
linearized and the form of each fluctuation 
component is solved. Then using the energy 
and entropy production balance equations for 
fluctuation components which include the 
non-linear effect, the amplitude for each fluctua- 
tion component is determined. Distributions of 
fluctuation components and the mean flow are 
described by the use of these forms and ampli- 
tudes. This method is a modification of the 
technique that was used by Stuart [3] to solve 
the flow between rotating concentric cylinders 
with Taylor vortex rolls. 

2.2 Linearized theory 
Assume fluctuation components as follows : 

l4’ = u;(y) cos cliz + U;(y) cos a*z 

v’ = u;(y) cos cliz + L&(y) cos c(*z 

w’ = w;(y) sin a,z + w;(y) sin c(*z 

P’ = Pi(y) cos aiz +-.Pp;(y) cos Q!*z 

T’ = T;(y) cos a,z + T;(y) cos a2z 1 

(9) 

where 

In equation (9) suffixes 1 and 2 indicate the 
first and second type vortex rolls, respectively. 
The first type vortex rolls correspond to those 
which appear at first in the passage when the 
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temperature difference between the flat plates 
is gradually increased. If the temperature dif- 
ference is increased further, the second type 
vortex rolls appear in the passage. Due to the 
larger temperature difference, higher-order vor- 
tex rolls appear, but, to avoid the complexity, 
only the region with the first and the second 
type vortex rolls is considered. The first and the 
second type vortex rolls are schematically 
shown in Fig. 2. 

Equations for the second type vortex roll 
components are 

1 du’, w;=---. 
CI~ dy 

(15) 

(16) 

2 clijGr c; = ____ T; 
Re (17) 

v. -w- 
&atsd flat plate 

Heated flat pate 

First type vortex rolls Second type vortex rolls 

Frc. 2. Patterns of vortex roils. 

at y=-t-3, (20) 

As equations (13), (14), (17) and (18) are not 
affected by 9, the eigenvalue problem consider- 
ing the appearance of vortex rolls is not affected 
by U so long as the flow is fully developed in 
the x-direction. 

As this is a linearized theory, the mean flow 
v; zzz 0 

is not affected by fluctuations and is expressed 
as follows : 

ii = 1 - 4y2 1 
T-= -(y + +j + Tw, 

00) 
afi 8 -...-.= __. 
ax Re 

Substituting equations (9) and (10) into 
equations (2) to (6) and linearizing the fluctua- 
tion components, we obtain equations for the 
first and the second type vortex roll components. 

Equations for the first type vortex roll From equations (17) and (18), 

components are 

1 dv; w; = _ _ -.._- 
~1 dy 

(11) 

From equations (13) and (14), we get 

6; = -a:Ra a; (21) 

v; = -cr:Rav;. 

Equations (21) and (22) with the boundary 
conditions (19) and (20) form an eigenvalue 
problem which relates the Rayleigh number to 
the wave number a. This problem was solved 
by Pellew and Southwell [4] and the result is 
shown in Fig. 3. In Fig. 3, (Ra), and (Ra), mean 
the_ critical Rayleigh numbers for the first and 
the second type vortex rolls, respectively. As 
is shown in Fig. 3, the first type vortex rolls 

(12) 

(13) 

(14) 
\-, _ . 

T; = - PrRev;. (18) 

The boundary conditions for rigid conducting 
boundaries are written as follows : 

at y=i-4 (19) 

(22) 
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with the wave number 3.13 appear at the lowest 
Rayleigh number 1708. Therefore, we put 

= 3.13. The wave number for the lowest 
$z), is 5.36, but we assume here that ix2 is equal 
to 2~xr, and put 01~ = 626. The reason for this 
assumption is explained in the following section. 

IO4 

8 

6 

b 5 
k 

4 

IO3 
0 2 3 4 5 6 7 

a 

FIG. 3. Relation between the critical Rayleigh number and 
the wave number. 

Putting aI = 3.13 and CQ = 626, we can 
solve equations (11) to (18) and get 

u;= . -&+{-0.121ycos4Y + O-0376 

sin 4 y - O-0165 y cos 2.16 y cash 504 y 

000110 y sin 2.16 y sinh 504~ ;+ 000517 

sin 2.16 y cash 504 y + 000539 

cos 2.16 y sinh 5.04 y - 0.0334 sinh 3.13 y} 

A_&(Y) (23) 

vi = A (cos 4 y + O-111 sin 2.16 y sinh 504 y 

- 0.0655 cos 2.16 y cash 5.04 y} 

= A g,(y) (24) 

w; = A(1*28sin4y + 0.0284cos2.16y 

x sinh 5.04 y - 0.224 sin 2.16 y cash 504 y} 

= A MY) (25) 

T; = & Pr Re (0122 cos 4 y + 0.0197 

x cos 2.16 y cash 5.04 y + 000116 sin 2.16 y 

x sinh 504 y - 0.~543 cash 3.13 y] 

= A G(Y) (26) 

u; = -~Re{0*0698ysin7*lfy + O+Olll 

x cos 7.11 y + 0000820 y sin’3.91 y 
x cash 9.59 y + 0000561 y cos 3.91 y 

x sinh 9.59 y + 0.~295 cos 3.91 y 

x cash 9.59 y - 0*000244 sin 3.91 y 

x sinh 9.59 y + 000190 cash 6.26 y} 

= ~~(Y) (27) 

u; = - B (sin 7.11 y - 0.0132 cos 3.91 y 

x sinh 9.59 y -t- 0*00181 sin 3.91 y sinh 9.59 yj 

= BQzW (28) 

w; = - B { - 1,136 cos 7.11 y + 00190 

x cos 3.91 y cash 9.59 y - 0.0110 sin 3.91 y 

x sinh 9.59 yf = B h,(y) (291 

T; = -& Pr Re (0.0698 sin 7.11 y 

+ ~.~820 sin 3.91 y cash 959 y + 0.~561 

x cos 3.91 y sinh 9.59 y - 0000458 

x sinh 6.26 y} = B iz(y). (30) 

A and B in the above equations are arbitrary 
constants. 

Equations (23) to (30) give the forms of 
fluctuation components. Their amplitudes are 
determined in the next section. 

2.3 Energy integral 
The amplitudes of fluctuation components 

cannot be determined by linearized theory, To 
determine the amplitudes, the basic equations 
(2) to (8) which contain non-linear terms must 
be used. Using the relations obtained by 
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linearized theory, we put fluctuation components 
as follows : 

u’ = af1(y) cos CllZ + df,(y) cos 2 CllZ 

u’ = b g,(y) cos ctlz + e gz(y) cos 2 CX~Z 

w’ = b h,(y) sin a,z + e h,(y) sin 2 a,z 

T’ = c iI cos a,z +fi,(y) cos 2 cllz 1 

(31) 

In equation (31) a, b, c, d, e,fare the unknown 
amplitudes of each fluctuation component. By 
the assumption in the former section, &I is 
equal to 3.13. 

It is clear from equations (4) and (5) that v’ 
and w’ are not affected by u’. Therefore, it is 
reasonable to distinguish between the amplitude 
of the fluctuation velocity component in the 
x-direction and those in the y- and z-directions. 
Then, the amplitude of the fluctuation velocity 
component in the x-direction must satisfy an 
x-directional energy balance equation. 

Equation (31) is substituted into equation (3) 
and then each term is multiplied by afi(y) cos 
a,z (x-directional velocity component of the 
first type vortex roll). Taking the average value 
of the above equation in the y-z plane, we get 
the following equation, equation (32). Notice 
must be taken of the fact that U and Tsatisfy 
equations (7) and (8). 

t 

- s a bfh) glb) - 8 Y + 7 [a bf,(y) 

-f 

dy 

+ u e @“Ad 
dy h(y) 1 - ~1 b_f1(~)(2 b S(y) \ 

x k(y) + aefl(~)h2(~Dl dy 

- i a2 8 yfi(y) g,(y) dy = 0. 
-f 

vortex roll. The first term on the left-hand side 
of equation (32) represents the energy introduced 
into the first type vortex roll from the mean 
flow by means of the stress which might be 
called the Reynolds stress, although the mean 
value is taken over the z-direction, the second 
term the energy given by the first type vortex 
roll to the second type vortex roll by means of 
the interaction between these vortex rolls. 
The third term represents the energy dissipated 
by viscosity. Equation (32) shows that the first 
type vortex roll exists by such an x-directional 
energy balance mechanism. 

Through the same calculation, the x-direc- 
tional energy balance equation for all of the 
vortex rolls becomes as follows : 

- ! Cu bflb) glb) + d ef2W g2bGl -+ 
x { - 8 Y + W42) [a bflb) g,(y) 

+ de.fAy) s,(v)l> dy - _) [a’ 8 Y_&(Y) glb) 3 
+ d2 8 yf2(~) &)I dy = 0. (33) 

The first term on the left-hand side of equa- 
tion (33) represents the energy introduced into 
the vortex rolls from the mean flow by means 
of the Reynolds stress and the second term the 
energy dissipated by viscosity. 

The y- and z-directional energy balance 
equation for the first type vortex roll takes the 
following form : 

f s t 
$ b c gl(y) h(y) dy - 3 b2 e 

-f s -t 

(32) 

+ h,(Y) C My) 
Sl(Y)--- - 

dh(y) 
dy 

g2(y) dy 

(WI dy - ReZ 
Equation (32) indicates the x-directional 

energy balance equation for the first type 
x 1 bZ sl(y) iI dy = 0. _+ 

(34) 



FIG. 4. Flow pattern. 
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The first term on the left-hand side of equation 
(34) represents the energy introduced into the 
first type vortex roll by means of buoyancy, the 
second term the energy given by the first type 
vortex roll to the second type vortex roll and 
the third term the energy dissipated by viscosity. 
The symbol (Gr), in equation (34) means a 
critical Grashof number for the first type 
vortex roll whose wave number is equal to 3.13. 
Therefore, (Gr), = (Ra),/Pr = 1708/R-. 

The y- and z-directional energy balance 
equation for all the vortex rolls is given as 
follows : 

(Gr/Re’) _+ Cb c slW 4(y) + efs2(v) &(Y)I dy 

- We’) _f+ CbZ (WI gdy) iI(y) 

+ e2 (W2 g264 i2(y)l dy = 0. (35) 

The first term on the left-hand side of equa- 
tion (35) represents the energy introduced into 
the vortex rolls by means of buoyancy, and the 
second term, the energy dissipated by viscosity. 
In equation (35), (Gr), means a critical Grashof 
number for the second type vortex roll whose 
wave number is equal to 6.26 and is given as 
(Gr), = (Ra),/Pr = 18352/Pr. 

The equations of the entropy production 
balance are derived using energy equation (6). 

Equation (31) is substituted into equation (6) 
and then each term is multiplied by c iI cos cqz 
(temperature component of the first type vortex 
roll). Taking the average value of the above 
equation, we obtain the following : 

3 
Pr Re - blWIWy + 2 b cg,(y) 

-+ -+ 

My) WY) 
x bfg,(y)dy + ceg2Qdy 

1 
dy 

* 
1 

- ? s c iI [2 bfh(y) My) -i 
+ c e iI(y) h2(y)l dy 

1 

- f c2 g,(y) GCV) dy = 0. 
-+ 

(36) 

Equation (36) indicates the entropy produc- 
tion balance for the first type vortex roll. The 
first term on the left-hand side of equation (36) 
represents the entropy production due to the 
correlation between the mean flow and the 
fluctuation, the second term the entropy pro- 
duction due to the correlation between the 
first and the second type vortex rolls and the 
third term the entropy production due to heat 
conduction induced by the first type vortex 
roll. Equation (36) shows that the lirst type 
vortex roll exists by such an entropy production 
balance mechanism. 

Through the same calculations, the equation 
of the entropy production balance for all of the 
vortex rolls is as follows : 

- { - 1 P c d_d My) + efs264 i2Wl dy 

+ U’r W2) f [b c sAA MA 
-+ 

+ efg2CY) i2W12 dy - (Pr Re/2) 

x < _+[b c slW i&A + efg2W i2691 W21 s 

- _f Cc’ slW ih9 + f” g2cV) %91 dy s 

x iI(y) Cb c g,(y) iI + efg2W i2Wl dy = 0. (37) 

+ 

- F 
s 

The first term on the left-hand side of equa- 

Cb c g,(y) My) + efg,(y) i2(y)] dy tion (37) represents the entropy production due 
to the correlation between the mean flow and 

-+ 
the fluctuation and the second term the entropy 

X s bcgl(y)ilWdy c ii(y) 
production due to heat conduction induced by 

-f the vortex rolls. 
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For the six unknowns, a, b, c, d, e, f, there 
exist six equations, equations (32) to (37). 
Therefore, we can solve them. 

When the Rayleigh number was increased 
to near (Ra),. it was observed experimentally 
that the vortex motion became irregular and 
unstable. So we study the range of Rayleigh 
numbers between (Ra), and (Ra),. 

By the use of the result of the eigenvalue 
problem of equations (20) to (22), it is shown 
that in the range of Ra -c (Ra), the second type 

exhibit a vortex pattern any more. It is more 
reasonable to treat the second type vortex 
roll as a velocity fluctuation. Then the second 
type vortex roll corresponds to the second 
harmonic of the first type vortex roll, and for 
this reason we assumed that the wave number of 
the second type vortex roll was twice that of the 
first type vortex roll. 

To solve equations (32) to (37), the integrals 
contained in them are evaluated. 

vortex roll cannot exist. However, it is indicated 
j 8 yf,(y)gr(y) dy = 1.017 x 1O-2 Re 

by experimental results that in such a range -+ 
of Rayleigh number the second type vortex 
roll pattern exists. This inconsistency can be f {fi(y)g1(y)}2 dy = 6.726 x low5 Re2 
explained as follows. -3 

As was stated before, when a flow is fully 
f developed, there are two different kinds of _+ MY) gl(y) CWzW/dyl - 2 ~Jioi)fi(~) 

energy introduced into the vortex roll. One is 
h,(y)} dy = 1.179 x 1O-3 Re* 

the energy introduced into the vortex roll from 
the mean flow by means of Reynolds stress and 
the other is the energy introduced into the 
vortex roll by means of buoyancy. The eigen- 
value problem controls the vortex roll com- 
ponents that exist in the energy due to buoyancy. 
Therefore, according to the result of the eigen- 
value problem, the vortex roll components, 
whose energy is supplied by buoyancy, cannot 
exist in the range of (Ru)~ < Ru < (Ra),. How- 
ever, the other vortex roll components, whose 
energy is supplied by the Reynolds stress, can 
exist in such a range of Rayleigh numbers. As 
is clear from equations (32) to (35), the vortex 
roll components that derive their energy from 
buoyancy are the y- and z-directional com- 
ponents (u’ and w’) and the other component 
(u’) derives its energy from the Reynolds stress. 

According to the above consideration, we 
place the amplitude of the y- and z-directional 
velocity components of the second type vortex 
roll equal to zero. That is, we make e = 0. 
This is confirmed by Fig. 4 which indicates the 
flow pattern obtained by means of paraffin 
smoke. 

s 8 yf2(y) g2(y) dy = 2.200 x lop2 Re 
-f 

f gl(y) ill) dy = 1.764 x 10e2 Pr Re 
-3 

_4 (gl(y) ii(y)}” dy = 5.285 x low4 (PrRe)2 3 

_) {g,(y) G(Y) P,bWyl - 2 ~1 4(y) 1’2cV) f 

x h,(y)} dy = 1.691 x 10m4 (Pr Re)’ 

_t+ g2(y) i2(y) dy = 5250 x 10e3 Pr Re. 

Substituting these values into each term, we 
solve the equations. The results are 

(39) 

As the second type vortex roll lacks the y- and 
z-directional velocity components, it does not 
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e=O (42) 

(43) 

Using equations (7), (8), and (38) to (43). we 
get the distribution of the mean flow, as follows : 

U = (1 - 4 y2) + Re / u’v’ dy 
+ 

407.4 ( Ra .) 

=(I - 4 y2) + 

T=(-y+$+T,)+PrRe{fc’T’dy 
0 

-Y f 
I vTdy}=(-y+$+T,) 

-3 

x [$[siCv)ii(y)dy - y[MMy)dyl. (45) 

The second terms on the right-hand side of 
equations (44) and (45) show the distortion of 
the mean flow caused by the non-linear effect 
of the fluctuation components. 

The results are rearranged as follows. 

u = ii + afi(y) coscllz + dfz(y) cos2a,z (46) 

v= b g,(y) cos alz + e g2(y) cos 2 cllz (47) 

w= b h,(y) sin tliz + e h,(y) sin 2 a,z (48) 

T = T+ cil(y) cosalz +fi,(y) cos2a,z.(49) 

In the above equations, a-f and fi(yti2(y) 
are determined by equations (38) to (43) and 
(23) to (30) respectively. The mean flow distribu- 
tion, U and T are expressed by equations 
(44) and (45). 

The Nusselt number for this flow is 

Nu = _ !_? 
ay y=-t 

(50) 

The second term on the right-hand side of 
equation (50) corresponds to convected heat. 

3. EXPERIMENT 
3.1 Experimental apparptus 

The heated flat plate used for the experiment 
is shown in Fig. 5. The upper surface of the 
heated flat plate was made of mirror-like bras; 
plate, and was heated by electricity. The heaters 
were divided into nine segments in the direction 
of the flow and each heater was controlled 
independently. In the direction normal to the 
flow, each heater was divided into one main 
heater and two compensating heaters, one on 
each side. The surface temperature of the flat 
plate was measured by copper-constantan 
thermocouples soldered to the brass plate. The 
input voltage for each heater was so regulated 
that the surface temperature was kept constant. 

The leading edge of the heated flat plate was 
shaped to form an ellipse and a small pipe with 
a slit was buried in it. Paraffin smoke was 
supplied into the stream through this slit for 
flow visualization (see Fig. 4). 

The cooled flat plate, which was made of 
transparent vinyl plates, was mounted on the 
heated flat plate. Its surface temperature was 
kept constant by means of cooling water. The 
height of the flow passage was adjusted by the 
height of side walls. 

To avoid disturbance caused by the measuring 
slits, a flat plate was laid above the cooled 
flat plate. The distance from this flat plate to the 
cooled flat plate was equal to the height of the 
flow passage. 

Even if the flow has a high velocity, it be- 
comes three-dimensional so long as the tempera- 
ture difference is large enough to cause the 
vortex rolls. For instance, if. the temperature 
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Heated horizontol 

/ 

Coded horizontal 
flat plote flot plate Flat plote 

Leoding edge of the heated flat plote 

FIG. 5. Experimental apparatus. 

difference is about 60 degC, a flow field along the 

heated flat plate, whose main stream velocity is 
about 3 m/s, becomes three-dimensional near 
the rear part of the heated flat plate. ‘However, 
we used a low speed flow (U, + 0.6 m/s) in this 
experiment to get a stable fully developed flow. 

Because of the low speed and because of the 
existence of the temperature field, the special 
hot-wire anemometer which is shown in Fig. 6 
was used to measure flow velocity. The trans- 
mitter shown in Fig. 6 consists of a platinum 
wire of 50 ~1 diameter which is stretched.normal 
to the flow direction and an A.C. current at 
50 cycles is supplied to it. The receiver is a fine 
platinum wire of 5 u diameter and is heated by 
a constant current. The transmitter is fixed, but 
the receiver can be traversed in the how direction 
so as to adjust the distance between them. 

A heat signal of 100 cycles is added to the 
flow which passes the transmitter and this 
signal is transported to the receiver by the flow. 
The signal is received as a voltage fluctuation 
in the receiver. Denoting the voltage applied 
tothetransmitterbye~ a sin~~,thesignalvoltage 
e2 detected by the receiver is proportional to 
sin’[ot - (247’) (l/u)], where u is the velocity 

of the flow, I is the distance from the tr~smitter 
to the receiver, T = l/50 and o = 100 n. If we 
change the distance, the received signal changes 
from e2 to e;, where e; is proportional to 

eceiver. 5~ olotinum wire 
I 

Trmsmitter, 50+ platinum wire 

FIG. 6. Hot-wire anemometer. 
L 

sin2 (wt - [(27c/T) (I/U) + (27r;iT) (Al/u)]}. Ap- 
plying e, and e2(ei) to the horizontal and the 
vertical deflectors of the oscilloscope, respec- 
tively, we observe a Lissajous figure on the 
screen. 
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If we select I and Al as [(2x/T) (I/u) = (n/2j m] 
(m is a positive integer) and [(2n/T)(Al/u) = 
(x/2)], the Lissajous figure for each case becomes 
a parabola whose convex direction is reversed. 
The velocity of the flow is measured by the 
observation of these parabolas. After putting 
the receiver at the place which makes a parabola 
appear on the screen of the oscilloscope, we 
shift it to the new place which again makes a 
parabola appear on the screen. If we can measure 
the shifted distance Al, the velocity of the flow is 
known,using the relation [(2n/T) (A&J) = (n/2)], 
as u = 200 Al (l/s). 

An increase in m weakens the received signal, 
so we used the state of m = 1. In such a state, 
the receiver was slightly affected by the wake 
of the transmitter. The correction for this wake 
was made. 

The temperature of the fluid measured by a 
copper-constantan thermocouple, made of 0.1 
mm wires, and a potentiometer. Lead wires of 
the thermocouple were contained in a stainless- 
steel tube of 0.8 mm outer diameter and only 
the tip of the thermocouple was exposed. In 
order to eliminate the effect of the measuring 
slit and to prevent errors due to heat conduction, 
the stainless-steel tube was bent to an L-shape. 

3.2 Experimental results 
3.2.1 The velocity distribution. Measurements 

were made to confirm whether a velocity distri- 
bution was fully developed or not when there 
was no temperature difference, and the result is 
shown in Fig. 7. It is clear from Fig. 7 that the 
velocity distribution is fully developed at the 
measuring station (x = 1550 mm) and there is 
no effect attributable to the paraffin smoke. 

Experimental results for the Row with vortex 
rolls are shown in Figs. 8 and 9. Figures 8 and 
9 indicate the velocity distribution in the y- 
and z-direction, respectively. The heavy lines 
in these figures are analytical values due to 
equation (46). Experimental results are in good 
agreement with analytical results. Figure 9(b) 
indicates the velocity distribution in the middle 
plane of the passage. If there existed only the 

0 Smoke flow mfe/air flow rofe = 0.0125 

R.?=682 o =o 

FIG. 7. Fully developed velocity distribution. 

Ro/(Ral, = 4.69 

O.! 

r, ( 

-0. 

5- 

O- 

5’ 

! 
/I” 

FIG. 8. Velocity distribution. 

first type vortex rolls, this velocity distribution 
would indicate a constant value. Because of 
the existence of the second type velocity 
fluctuation whose pitch is a half of the first type 
vortex roll, the velocity distribution is distorted 
as is shown in Fig. 9. 

3.2.2 The temperature distribution. Figure 10 
indicates the temperature distribution of a 
flow with no vortex roll. It is shown by this 
figure that the temperature distribution is not 
fully developed in the range of experimental 
Reynolds numbers. But, as is indicated in Fig. 
11, the appearance of the vortex rolls accelerates 
the development of the temperature distribution. 
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FIG. 9. Velocity distribution. 

T-c 

FIG. 10. Temperature distribution 

(Ra < (WI). 

Experimental results for a flow with vortex 
rolls are shown in Figs. 12 and 13. Figures 12 
and 13 indicate the temperature distribution in 
the y- and z-direction, respectively. The heavy 
lines in the figures are analytical values due to 

equation (49). The line of dashes in Fig. 12 
indicates the distribution of ‘I’(y) due to equa- 
lion (45) and it is found from this figure that the 
temperature gradient aT/ay reverses itself in 
the middle part of the passage. It is seen from 
this fact that heat is conducted from the upper 
cooled flat plate to the lower heated flat plate 
in such a region. As the heat flow from the lower 
to the upper flat plate is constant, there must 
be a violent convection motion in the middle 
of the passage to compensate for the negative 
heat conduction. The distribution of T(y) 
cannot be measured experimentally, but in the 
range of experimental Rayleigh numbers it is 
possible to approximate the T(y) distribution 
by the central distribution of the vortex roll 
(shown by the line connecting open circles). 
This distribution does not indicate the reversal 
of the temperature gradient, but in the middle 
of the passage the temperature gradient de- 
creases to near zero. Therefore, it was found 
experimentally that the heat is transferred by 
convection in the middle part of the passage. 
As is shown in Fig. 12, there is a little difference 
between the experimental and the analytical 
values. This might be caused by the error of 
the approximate analytical method. Figure 13 
shows the temperature distribution in the 
z-direction. It is found from this figure that the 
temperature distribution is distorted away from 
the sinusoidal distribution by the effect of the 
second type fluctuation. 

3.2.3 The pitch of vortex rolls. The variation 
of L due to the change of d, Re and Ra is investi- 
gated experimentally and the result is shown in 
Fig. 14. Figure 14 indicates that, in the range of 
d < 15 mm, i depends only on the value of d, 
and, in the range of d > 15 mm, i remains 
constant, unaffected by Re, Ru and d. The 
relation between d and ;i in the range of d < 
15 mm is expressed as I = 2.0 d. This relation 
agrees with the one that was predicted by the 
linearized theory. 

In the case of a flow along a heated horizontal 
flat plate, that is, in the case of the height d of 
the passage equal to infinity, it is inferred from 
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Ro/(/m), = 4.55 0 x = 1300 mm 

+I; 
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I 

FIG. 11. Temperature distribution. 

@OO 

m /iW(Ru), = 4.69 
lIIIl1 Re = 513 

T-r, 

FIG. 12. Temperature distribution. 

this experimental result that the vortex roll 
whose pitch is 32.2 mm appears. Therefore, the 
well-known result [5,6] about two-dimensional 
heat transfer from a heated horizontal flat plate 
can only be used when the temperature dif- 
ference is small and no vortex rolls appear on 
the flat plate. 

3.2.4 Nusselt number. The increase of the 
Nusselt number due to the appearance of 
vortex rolls was calculated from the experi- 
mental results and is shown in Fig. 15. The 
heavy line in Fig. 15 is the analytical value due 
to equation (50). To determine the experimental 
Nusselt number, the temperature gradient at 
the surface of the heated flat plate was used. 
In the range of Ra < (Ra), there exists no 

vortex roll in the passage and the flow is two- 
dimensional. But in the range of Ra > (Ra), 
the vortex rolls appear and the flow becomes 
three-dimensional. Heat due to convection 
rapidly increases with Rayleigh number and the 
Nusselt number becomes larger than 1. 

09 

I Ru/( Ru), = 4.69 Re = 513 

o : Experimental value 

t.3 

b! 

y = -0.25 

FIG. 13. Temperature distribution. 
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FIG. 14. Pitch of vortex rolls. 
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FIG. 15. The Nusselt number. 

4. CONCLUSION 
By investigating the forced convective heat 

transfer between horizontal flat plates, when the 

the mechanism of the vortex rolls was clarified 
and it was found that these discrete vortex 
rolls could be a simple model of turbulent flow. 

(c) The Nusselt number for a three-dimen- 
sional flow was obtained analytically. It was 
shown that the Nusselt number rapidly in- 
creased with the appearance of the vortex rolls. 

(d) A quantitative experiment on the vortex 
rolls was made. Experimental results for the 
velocity distribution, the temperature distribu- 
tion, the pitch of the vortex rolls and the 
Nusselt number were obtained. These experi- 
mental results were compared with analytical 
results, and it was found that they were in good 
agreement. 

lower plate is heated and the upper is cooled 
under the condition of a steady fully developed 1. 
flow, we obtained the following conclusions. 

(a) A sufficiently large temperature difference 
between the flat plates causes a three-dimen- 2. 
sional flow. It was clarified by the experiment 
and analysis that this three-dimensional charac- 

3, 

ter was caused by vortex rolls whose axes were 4. 
parallel to the flow direction. 

(b) The Navier-Stokes equations and the 5, 
energy equation for a three-dimensional flow 
were solved by an approximate method taking 
into account the nonlinear effect of the fluctua- 

6, 

tions. In the process of solving these equations, 
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Rbum&On peut considerer comme bidimensionnel l’&coulement entierement Ctabli et le champ de 
temperature entre deux plaques planes horizontales (lorsque la plaque inferieure est chauff&e et la plaque 
suptrieure est refroidie). Cependant, lorsque la difference de temperature entre ces plaques planes d&passe 
un valeur critique, on observe l’apparition de tourbillons en rouleaux dont les axes sont paralleles a la 
direction de l’ecoulement. En consequence, les champs de vitesse et de temperature sont completement 
modifies par ces tourbillons en rouleaux et ont un caracttre tridimensionnel. Les equations de la quantite 
de mouvement et de l’tnergie pour de tels champs sont non-lintaires. Ces equations sont rtsolues approxi- 
mativement en se basant sur les bilans d’energie et de production d’entropie des tourbillons en rouleaux. 
Afin d’obtenir des resultats thtoriques, on a mesure les distributions de vitesse et de temperature de l’&oule- 
ment tridimensionnel. On trouve que les rtsultats thtoriques sont en bon accord avec les rtsultats ex- 

perimentaux. 

Zusammenfasaung-Fur voll ausgebildete Strijmungen und Temperaturfelder zwischen zwei ebenen 
waagerechten Platten (wobei die untere Platte beheizt und die obere gekiihlt istj, kijnnen zweidimensionale 
Verteilungen angenommen werden. Wird jedoch die Temperaturdifferenz zwischen diesen Platten iiber 
einen kritischen Wert gesteigert, so erscheinen zwischen den ebenen Platten Wirbelrollen, deren Achsen 
parallel zur Stromungsrichtung liegen. Somit werden die Stromungs- und Temperaturfelder von diesen 
Wirbelrollen beeinflusst und nehmen einen dreidimensionalen Charakter an. Die Bewegungs- und Ener- 
giegleichungen dieser Felder sind nichtlinear. Diese Gleichungen sind auf Grund der Energie- und Entro- 
piebilanz naherungsweise gel&t. Urn theoretische Ergenisse zu erhalten, wurden die Geschwindigkeits- 
und Temperaturverteilungen der dreidimensionalen Striimung ausgemessen. Die theoretischen Ergebnisse 

zeigten gute Ubereinstimmung mit den experimentallen. 

A~m~8qim-llpa nonHocTbm paasmbrx Te9eHmx li HanwinK TeMnepaTypHnx noneit 
MeMy ropKaoHTanbnbfMK nnocKm~ macTKHaMK (Korna ~kimim nnacTaHa HarpeTa, a 
BepXHfIFIoXJI~eHa)IIpo~eccTeIIJIoIIepeHocaMOHCHO 6nno 6~ CWiTaTb~yMepHbIM.OJ&HaKo 
npK ysesmeHsw paaHocTK TernepaTyp Memay ~TBHH nnacTmaMK Bbme KpnTwiecKoro 
aHaqeHm BoamKamt BpaqeHm, ocb K~T~PHX napamesbHa HanpasneHww, Teqemn. IIon 

BnmHsfeiu a~xmixpeBbtxspau4emiffTemnepaTypHoenone nonyqaeTTpexaaepHadtxapaKTep. 
YpaBKeHm KonmecTBa DwKeKm H aHepraK RJrrr noao6mdx nonet HBJIR~OTCII HemHe& 
~bnm.TaK~e ypaBHeHHspemaIoTcfinpH6JIaHceHHO HaocHoBe 6ammaaHeprm H Boapacra- 

HWR WiTpOIUiK BEiXpeBHX BpalIleHHH. &IJl IIO@'BepWeHHH TeOpeTWUeCKHX pe8yJIbTaTOB 
KanrepJseTcn pacnpexeneHKe CKOpOCTM w TeMnepaTypH TpeXMepHOI'O IIOTOKa. HaiijqeHo, 'fT0 

TeOpeTE'IeCKHe peEiyJIbTaTH XOpOllIOCOI'JIaCyIOTCFl C CIKClIepKMeHTaJIbHHIr. 


