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Abstract—In fully developed flows and temperature fields between two horizontal flat plates (when the
lower plate is heated and the upper one is cooled), the phenomenon might be considered to be two-dimen-
sional. However, when the temperature difference between these flat plates is increased above a critical
value, vortex rolls with their axes parallel to the flow direction are observed to appear between the flat
plates. Consequently, the flow and temperature fields are completely affected by these vortex rolls and
have a three-dimensional character. The momentum and energy equations for such fields are non-linear.
These equations are solved approximately on the basis of energy and entropy production balance of
vortex rolls. In order to ascertain theoretical results, the velocity and temperature distributions of the three-
dimensional flow are measured. It is found that theoretical results are in good agreement with experimental

results.

NOMENCLATURE .
co-ordinate parallel to the main flow

direction (see Fig. 1);

co-ordinate normal to the horizontal
flat plates (see Fig. 1);

co-ordinate parallel to the horizontal
flat plates and normal to the main
flow direction (see Fig. 1);

velocity component in the x-direction;
velocity component in the y-direction;
velocity component in the z-direction ;
maximum value of the fully developed
velocity profile with no vortex rolls;
pressure;

density;

kinematic viscosity;

specific heat of fluid at constant pres-
sure ;

heat conductivity;

temperature;

surface temperature of the heated
horizontal flat plate (constant);
surface temperature of the cooled
horizontal flat plate (constant);
temperature difference, T,, — T,,;

heat transfer from the lower to the
upper flat plate;

coefficient of thermal expansion;
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g acceleration due to gravity;
d,  thickness of the passage;

A pitch of vortex rolls;

Re, Reynolds number, Uyd/v;

Pr,  Prandtl number, pvC,/k;

Gr, Grashof number, gBATd3/v?;
Ra, Rayleigh number, Pr.Gr;
Nu, Nusselt number, gd/kAT ;

1. INTRODUCTION

CoNSIDER a flow between two horizontal flat
plates, where the lower plate is heated isotherm-
ally and the upper one is cooled isothermally.
When the temperature difference between these
flat plates is small and the flow and temperature
fields are fully developed in the flow direction,
the profiles of velocity and temperature distribu-
tions are respectively parabolic and linear. In
the following, such a state of flow is called the
main stream.

When the temperature difference between the
horizontal flat plates is increased above a
critical value, longitudinal vortex rolls appear
in the passage. The flow pattern is completely
affected by these vortices. These vortices are
generated by buoyancy. The fluid motion in a
closed horizontal fluid layer which is heated
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from below was first analysed by Lord Rayleigh
and has since been studied by many researchers.
Recently, analytical and experimental work on
this problem has been done by Malkus [1, 2].
He intended to explain the nature of turbulence
using the mechanism of convective cells caused
by buoyancy. However, no quantitative measure-
ment for such a convective cell has been made,
because the cellular motion is too unstable to
be measured. The low velocity of the cellular
motion has also made it difficult to measure
the velocity distribution.

In this study, the obstacle is removed by the
existence of the main stream, and quantitative
measurements are made. Experimental results
are compared with analytical results and a
fairly good agreement is obtained.

Usually, a flow between two horizontal flat
plates is treated as a two-dimensional phenome-
non and the three-dimensional character caused
by vortex rolls is notconsidered. The flow can be
treated as a two-dimensional phenomenon only
when the temperature difference between the
flat plates is small. In the case of a finite tempera-
ture difference, which is important practically,
vortex rolls appear in the passage and the heat
transfer from the lower to the upper plate
increases. If the temperature difference is in-
creased further, the vortex rolls split and the
size of each roll decreases. Eventually, the
regularity of the fluid motion disappears and
turbulence occurs.

Consider the mechanism of such a vortex
roll. If we observe one vortex roll, it is known
that it absorbs (a) energy introduced into the
vortex roll by buoyancy, (b) energy introduced
into the vortex roll from the main stream by
the Reynolds stress, and (c) energy introduced
into the vortex roll from larger-scale vortex
rolls by the interaction of vortex rolls. These
energies are balanced by (a) energy transferred
from this roll to smaller-scale vortex rolls and
(b) energy dissipated by viscosity. There scems
to exist a resemblance between this mechanism
and the turbulent flow mechanism. Therefore,
the object of this report is not only to consider
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the effect of buoyancy on the forced convective
heat transfer, but also to clarify the basic
concept of turbulence by means of the analogy
which exists between a discrete vortex roll
system and turbulence.

. 2. ANALYSIS
2.1 Basic equations

The co-ordinate system is indicated in Fig. 1.
Dividing velocity, length, temperature and pres-
sure by Uy, d, AT, and p U}, respectively, we

> x

Cooled flat plate
{
d

Heated flat plate
F1G. 1. The co-ordinate system.

obtain non-dimensional expressions, where the
suffix s means the standard state. Then,

(u,p,w) = Ug(u*v* w*),

(x,p,2) = d(x*,y*,z%), T = AT . T*,
T,=AT.T¥  T,=AT.T¥
P = pU%. P*

Having made this change, all stars will now be -
dropped. In the remainder of this report all
unstarred quantities are non-dimensional unless
it is otherwise stated.

Let us consider a steady fully developed flow
in the x-direction and assume that fluid proper-
ties except p are always independent of tem-
perature. Moreover, we assume that the density
variation due to the temperature difference
appears only in one term where p is multiplied
by g. This variation is indicated approximately
as

pg = pdl — BAT(T — T)l g.

Velocity, pressure and temperature are written



FORCED CONVECTIVE HEAT TRANSFER BETWEEN HORIZONTAL FLAT PLATES 805

as follows:
u=1(y) +uyz2)
v= v'(y,2)
w= w(y,2) (1)

P = P(x,y) + P'(y.2)
T=Ty + Tk

In contrast to the time mean in a turbulent
flow, the bars in equation (1) indicate a mean
value taken over the z-direction. Terms with
bars and primes indicate mean values and
fluctuation components, respectively. All fluctua-
tion components have a periodicity in the
z-direction and their mean values over one
pitch reduce to zero. That is,

W=v=w=P=T=0,

Substituting equation (1) into the Navier—
Stokes equation and the energy equation,
neglecting pressure and dissipation terms and
making use of the characteristics of fluctuation
components, we obtain equations for the mean
flow and fluctuation components. In the above
process, we put the pressure gradient 0P/0x
equal to the well-known value, —8/Re, which
corresponds to a two-dimensional channel flow.

The equations for the fluctuation components
are

o ow'
a_y + E =0 (2)
v,@ﬂ,gu_'w,au' ou'v'
oy Oy 0z dy
1 (0% o™
~ el =) ©
AL
dy 0z  dy Oy
1 (% o\ Gr
+§;<a‘yT*éz—z)+R—ezT @
LU (62w’ o*w'
oy 0z 0z ' Re\dy? +€ZT
(5)

3F

,6T+ v,aT’+w/E T
v dy oy 0z oy
1 [o*T T
= 6
PrRe(é’y2 * 622> (©)

The equations for the mean stream are

wv_§ 10 o)

dy  Re Redy?

ov'T 1 &*T

e il 3
0y PrRe dy* ®)

Equations (2) to (8) are non-linear and cannot
be solved exactly. Therefore, we solve these
equations approximately by the following
method. In the first place, these equations are
linearized and the form of each fluctuation
component is solved. Then using the energy
and entropy production balance equations for
fluctuation components which include the
non-linear effect, the amplitude for each fluctua-
tion component is determined. Distributions of
fluctuation components and the mean flow are
described by the use of these forms and ampli-
tudes. This method is a modification of the
technique that was used by Stuart [3] to solve
the flow between rotating concentric cylinders
with Taylor vortex rolls.

2.2 Linearized theory
Assume fluctuation components as follows:

7

u = uj(y)cosaz + uh(y)cosa,z
vi(y)cosayz + vh(y) cos ayz
w = wi(y) sina,z + wi(y) sin e,z 9)
P' = Pi(y)cosa,z + PL(y)cos a,z
T = Ti(yycosa;z + T5(y)cos ayz

v =

2r
=4
*=7

In equation (9) suffixes 1 and 2 indicate the
first and second type vortex rolls, respectively.
The first type vortex rolls correspond to those
which appear at first in the passage when the
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temperature difference between the flat plates
is gradually increased. If the temperature dif-
ference is increased further, the second type
vortex rolls appear in the passage. Due to the
larger temperature difference, higher-order vor-
tex rolls appear, but, to avoid the complexity,
only the region with the first and the second
type vortex rolls is considered. The first and the
second type vortex rolls are schematically
shown n Fig. 2.

Cooled flat plote Covled flot plate

Heated flat plate
Heated flat plate
First type vortex rolls Second type vortex rolls

FI16. 2. Patterns of vortex rolls.

As this is a linearized theory, the mean flow
is not affected by fluctuations and is expressed
as follows:

i=1-—4y*
T=—-(y+3+T, (10)
P 8

éx  Re

Substituting equations (9) and (10) into
equations (2) to (6) and linearizing the fluctua-
tion components, we obtain equations for the
first and the second type vortex roll components.

Equations for the first type vortex roll
components are

) 1 dv}
MiE Ay (11)
d? AN ,
(~d—y~2 - oc1> uy = —8Reviy (12)
2 2 2
Godamen
dZ
(a;z— - ocf) T, = —PrRe) (14)
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Equations for the second type vortex roll
components are

Wy = — i‘f_if’_z (15)
o, dy

dz
—5 — o3| uy = —8Re v,
(dyz “2) u; 2y

2 2 207,
d .\, a3Gr
TF T dz g U= T;
J Re

; d2
(‘dm‘;z‘ — a%) /2 = -PrRe U’Z.

The boundary conditions for rigid conducting
boundaries are written as follows:

(16)

(17)

(18)

. dr] d? z
U1=‘8-J;1*:<’d72‘—’(x%> Dl—‘:o

at y= +3 (19)
. de d? :
vzzd—;: (d—y-i—a§> vz;zo

at y = +3. (20)

As equations (13), (14), (17) and (18) are not
affected by #, the eigenvalue problem consider-
ing the appearance of vortex rolls is not affected
by & so long as the flow is fully developed in
the x-direction.

From equations (13) and (14), we get

dz , 3 ,
a“;‘z‘ - Oy vy

From equations (17) and (18),

d2 5 3 .
a‘)}“z“az Uy ==

Equations (21) and {22) with the boundary
conditions (19) and (20) form an eigenvalue
problem which relates the Rayleigh number to
the wave number «. This problem was solved
by Pellew and Southwell [4] and the result is
shown in Fig. 3. In Fig. 3, (Ra), and (Ra), mean
the critical Rayleigh numbers for the first and
the second type vortex rolls, respectively. As
is shown in Fig. 3, the first type vortex rolls

20

= —o?Rav)

(22)

—o3Ra v,
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with the wave number 3-13 appear at the lowest
Rayleigh number 1708. Therefore, we put
o, = 3-13. The wave number for the lowest
(Ra), is 5:36, but we assume here that «, is equal
to 204, and put o, = 6-26. The reason for this
assumption is explained in the following section.

{Ra),

N

2 \\—_" /

Ra
3

/|

o] i 2 3 4 5 € 7

FiG. 3. Relation between the critical Rayleigh number and
the wave number.

Putting «, = 313 and a, = 626, we can
solve equations (11) to (18) and get

uy = — %Re {—0121 ycos4y + 00376
x sin4y — 0:0165 y cos 216 y cosh 504 y
- 000110 y sin 2-16 y sinh 5-04 y -+ 0-00517
x sin 2:16 y cosh 504 y + 0-00539
X €0s 2:16 y sinh 5:04 y — 0-0334 sinh 3-13 y}
= Af() (23)

vy = A {cos4y + 0-111 sin 2:16 y sinh 504 y
— 0-0655 cos 216 y cosh 5:04 y}

= Agy) 24

wy; = A{128sin4y + 00284 cos 216 y
x sinh 504 y — 0224 sin 216 y cosh 5-04 y}
= A hy(y) (25)
T, = —3—% Pr Re {0-122 cos 4 y + 00197
x c0s 2:16 y cosh 504 y + 000116 sin 2:16 y
x sinh 504 y — 000543 cosh 3-13 y}

= Ai\(y) (26)

—--347% Re {0-0698 y sin 7-11 y + 00111
x cos 711 y + 0000820 y sin 391 y
x cosh 9:59 y + 0-000561 y cos 391 y
x sinh 9-59 y + 0-0000295 cos 391 y
x cosh 9:59 y — 0-000244 sin 391 y
x sinh 9-59 y + 0-00190 cosh 6-26 y}
= Bfy(y)

vy = — B{sin 711y — 00132 cos 391 y
x sinh 959 y + 0-00181 sin 391 y sinh 9:59 y}
= Bg,(y) (28)

wy = — B{— 1136 cos 711 y + 00190
x ¢0s 391 y cosh 959 y — 0:01105sin 391 y
x sinh 9-59 y} = B hy(y) (29)

uy, =

27

B
T, = ——0P -0698 sin 7-11
2= "% r Re {0-0698 sin 7-11 y

+ 0-000820 sin 391 y cosh 9-59 y + 0-000561
x cos 391 ysinh 9-59 y — 0-000458
x sinh 626 y} = B i,(y).

4 and B in the above equations are arbitrary
constants.

Equations (23) to (30) give the forms of
fluctuation components. Their amplitudes are
determined in the next section.

(30)

2.3 Energy integral

The amplitudes of fluctuation components
cannot be determined by linearized theory. To
determine the amplitudes, the basic equations
(2) to (8) which contain non-linear terms must
be used. Using the relations obtained by
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linearized theory, we put fluctuation components
as follows:

afi(y) cosayz + dfy(y)
v =bg(y)cosa,;z + eg,(y)cos2a,z

!

u

cos2u,z

W= bh(y)sinogz + ehy()sin2az [ OV

T = ciy(y) cosayz + fi(y) cos2a,z

In equation (31) a, b, ¢, d, e, f are the unknown
amplitudes of each fluctuation component. By
the assumption in the former section, «, is
equal to 3-13.

It s clear from equations (4) and (5) that v’
and w' are not affected by u'. Therefore, it is
reasonable to distinguish between the amplitude
of the fluctuation velocity component in the
x-direction and those in the y- and z-directions.
Then, the amplitude of the fluctuation velocity
component in the x-direction must satisfy an
x-directional energy balance equation.

Equation (31) is substituted into equation (3)
and then each term is multiplied by a f,(y) cos
o,z (x-directional velocity component of the
first type vortex roll). Taking the average value
of the above equation in the y—z plane, we get
the following equation, equation (32). Notice
must be taken of the fact that & and T satisfy
equations (7) and (8).

4

R
- f abfi(y)g.(y) {" By + 78[‘1 bfiy)
-4
x g1(y) + defo(y) gz(y)]} dy

4
- j {afl(y) [b d

-3
dfl()’)

d
g;y) g:(y)

+ae

gz()’)] — % [afi(J’)<2 b df,(y)
x hy(y) + aefi(y) hz()’))]} dy .

E)
- [ a*8yfi(»g:(y)dy = 0.

Equation (32) indicates the x-directional
energy balance equation for the first type

G2 k) 2()’ﬂ} dy — (Gn)y
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vortex roll. The first term on the left-hand side
of equation (32) represents the energy introduced
into the first type vortex roll from the mean
flow by means of the stress which might be
called the Reynolds stress, although the mean
value is taken over the z-direction, the second
term the energy given by the first type vortex
roll to the second type vortex roll by means of
the interaction between these vortex rolls.
The third term represents the energy dissipated
by viscosity. Equation (32) shows that the first
type vortex roll exists by such an x-directional
energy balance mechanism.

Through the same calculation, the x-direc-
tional energy balance equation for all of the
vortex rolls becomes as follows:

- _i Labfi(y) g:(») + defr(y) g2(¥7]
x {— 8y + (Re/2)[abfi(y)
+ defy(y)g.(»)]} dy — _l [a® 8y fi(y)g:(y)

+d*8yfr(y)g,(»)]dy =0 (33)

The first term on the left-hand side of equa-
tion (33) represents the energy introduced into
the vortex rolls from the mean flow by means
of the Reynolds stress and the second term the
energy dissipated by viscosity.

The y- and z-directional energy balance
equation for the first type vortex roll takes the
following form:

g1

Gr
Re chm()’ L(y)dy —
-3

»—t‘——m»-

dg,
X {gl(y) [gl(y) ‘ng(y) + g,y idy(i)]

—ay [9100) <2 hi(y) g2(0) + 91(») ha(¥)>]
dh
)| 0 L2 — g S0
v

Re?

3
x | b*g,()is(y)dy = 0.



Cooled flat plate

-

A Aﬁ*"—"-

Heated flat plate

FiG. 4. Flow pattern.

[ facing page 808
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The first term on the left-hand side of equation
(34) represents the energy introduced into the
first type vortex roll by means of buoyancy, the
second term the energy given by the first type
vortex roll to the second type vortex roll and
the third term the energy dissipated by viscosity.
The symbol (Gr); in equation (34) means a
critical Grashof number for the first type
vortex roll whose wave number is equal to 3-13.
Therefore, (Gr); = (Ra),/Pr = 1708/Pr.

The y- and z-directional energy balance
equation for all the vortex rolls is given as
follows:

Ed
(Gr/Re?) _j} [bcgi(y)ir(y) + efg.(») ix(y)]dy

- /R ] [ (601 010 :6)

+ €% (Gr), g2(y) ir(y)] dy = 0. (3%5)

The first term on the left-hand side of equa-
tion (35) represents the energy introduced into
the vortex rolls by means of buoyancy, and the
second term, the energy dissipated by viscosity.
In equation (35), (Gr), means a critical Grashof
number for the second type vortex roll whose
wave number is equal to 626 and is given as
(Gr), = (Ra),/Pr = 18352/Pr.

The equations of the entropy production
balance are derived using energy equation (6).

Equation (31) is substituted into equation (6)
and then each term is multiplied by ¢ i,(y) cos a, z
(temperature component of the first type vortex
roll). Taking the average value of the above
equation, we obtain the following:

4+
PrR
—{—chgl(y)il(y)dy +L2£J‘ bcg(y)
-

x i;(y) [bcg(»i(y) + efg2(y) i,(y)] dy

Pr Re

f [bcgi(n)idy) + efg2(y) in(y)] dy

} ciy(y)

x _}} bcgi(»)iy) d)’} - {%

y
<[00 2+ ceg gy

ciy(y) [2bfhi(y)ix(y)

‘—-:»-

4
2

+ ceiy(y) hy(y)] d)’}

| 2amitidy =0

(36)

Equation (36) indicates the entropy produc-
tion balance for the first type vortex roll. The
first term on the left-hand side of equation (36)
represents the entropy production due to the
correlation between the mean flow and the
fluctuation, the second term the entropy pro-
duction due to the correlation between the
first and the second type vortex rolls and the
third term the entropy production due to heat
conduction induced by the first type vortex
roll. Equation (36) shows that the first type
vortex roll exists by such an entropy production
balance mechanism.

Through the same calculations, the equation
of the entropy production balance for all of the
vortex rolls is as follows:

~ (= | Beav)it) + 00501 &

+PrRed) | [beg,0)i)
+ efg,9) i,())* dy — (Pr Re/2)
<< | pea0)i) + efgs0 )] )

- —I} [ g:(0) i:(0) + f% 92(0) ia()] dy

= 0. 37)

The first term on the left-hand side of equa-
tion (37) represents the entropy production due
to the correlation between the mean flow and
the fluctuation and the second term the entropy
production due to heat conduction induced by
the vortex rolls.
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For the six unknowns, a, b, ¢, d, e, f, there
exist six equations, equations (32) to (37).
Therefore, we can solve them.

When the Rayleigh number was increased
to near (Ra),. it was observed experimentally
that the vortex motion became irregular and
unstable. So we study the range of Rayleigh
numbers between (Ra); and (Ra),.

By the use of the result of the eigenvalue
problem of equations (20) to (22), it is shown
that in the range of Ra < (Ra), the second type
vortex roll cannot exist. However, it is indicated
by experimental results that in such a range
of Rayleigh number the second type vortex
roll pattern exists. This inconsistency can be
explained as follows.

As was stated before, when a flow is fully
developed, there are two different kinds of
energy introduced into the vortex roll. One is
the energy introduced into the vortex roll from
the mean flow by means of Reynolds stress and
the other is the energy introduced into the
vortex roll by means of buoyancy. The eigen-
value problem controls the vortex roll com-
ponents that exist in the energy due to buoyancy.
Therefore, according to the result of the eigen-
value problem, the vortex roll components,
whose energy is supplied by buoyancy, cannot
exist in the range of (Ra); < Ra < (Ra),. How-
ever, the other vortex roll components, whose
energy is supplied by the Reynolds stress, can
exist in such a range of Rayleigh numbers. As
is clear from equations (32) to (35), the vortex
roll components that derive their energy from
buoyancy are the y- and z-directional com-
ponents (v' and w') and the other component
(w) derives its energy from the Reynolds stress.

According to the above consideration, we
place the amplitude of the y- and z-directional
velocity components of the second type vortex
roll equal to zero. That is, we make e = 0.
This is confirmed by Fig. 4 which indicates the
flow pattern obtained by means of paraffin
smoke.

As the second type vortex roll lacks the y- and
z-directional velocity components, it does not
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exhibit a vortex pattern any more. It is more
reasonable to treat the second type vortex
roll as a velocity fluctuation. Then the second
type vortex roll corresponds to the second
harmonic of the first type vortex roll, and for
this reason we assumed that the wave number of
the second type vortex roll was twice that of the
first type vortex roll.

To solve equations (32) to (37), the integrals
contained in them are evaluated.

8yfi(y)g:(y)dy = 1:017 x 107 % Re

{fl(y)gl(y) [dfz(y( /;iY] - 20, 1) /2(0)
hy(y

8y£2(y) g2(y) dy = 2200 x 107> Re
-4

s
|
-4
? (/i) g:(»)}2 dy = 6726 x 1075 Re?

}dy = 1-179 x 1073 Re?

f 910 i(y)dy = 1764 x 1072 PrRe

-4

} {g:(»)i;(»)}*dy = 5285 x 107 *(Pr Re)?
-4

) iy(y) [diz(y)/dy] — 2ay i1(y) i5(0)
x hy(y)} dy = 1691 x 10~*(Pr Re)?

{91y

+
| 9200 ix(y)dy = 5250 x 1073 Pr Re.
-3

Substituting these values into each term, we
solve the equations. The results are

6435 | Ra 1%
Pr Re {(Ra),

" 7390 [Ra 1L+ 5083 .
Pr? )(Ra),
1266 ( Ra p
i —1
Pr Re {(Ra)1 } (39)

1266 {(Ra),
" PrRe| Ra

(Ra), :
E
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2182 | Ra 1
Pr? Re |(Ra),

4= 3960 [ Ra Ut soss @
“p—{@ B }*
e=0 (42)
2580 (Ra),
/= Pr Re {1 " Ra } 43)

Using equations (7), (8), and (38) to (43). we
get the distribution of the mean flow, as follows:

ii=(1—4y?)+ Refuv'dy
+

4074 | Ra 1
Pr? Re |(Ra),

=(1-4y})+
3960 ( Ra
ifl(y) g1(7) dy (44)

T=(—y+4i+ T,,)-+—PrRe{ijdy
—y_}Wdy}=(—y+-%+ T,)
160-2 | (Ra),
B Ra}
X 000 i) dy - yiglm L) dy]. (45)

Pr Re
The second terms on the right-hand side of
equations (44) and (45) show the distortion of
the mean flow caused by the non-linear effect
of the fluctuation components.
The results are rearranged as follows.

u= i+ af(y) cosa;z + df,(y) cos2a,z (46)

v = bg,(v)cosa,z + eg,(y)cos2 o,z (47)
bhy(y)sina;z + eh,(y)sin2a,z (48)

T = T+ ciy(y) cosayz + fi,(y) cos2a,z.(49)

w =

In the above equations, a—f and f,(y)}-iy(y)
are determined by equations (38) to (43) and
(23) to (30), respectively. The mean flow distribu-
tion, # and T, are expressed by equations
(44) and (45).

The Nusselt number for this flow is

oT
u —_— o —_——
ay y=—4%
=1+ 1413 {1 - (Ra)l}. (50)
Ra

The second term on the right-hand side of
equation (50) corresponds to convected heat.

3. EXPERIMENT
3.1 Experimental apparatus

The heated flat plate used for the experiment
is shown in Fig. 5. The upper surface of thc\
heated flat plate was made of mirror-like brass
plate, and was heated by electricity. The heaters
were divided into nine segments in the direction
of the flow and each heater was controlled
independently. In the direction normal to the
flow, each heater was divided into one main
heater and two compensating heaters, one on
each side. The surface temperature of the flat
plate was measured by copper—constantan
thermocouples soldered to the brass plate. The
input voltage for each heater was so regulated
that the surface temperature was kept constant.

The leading edge of the heated flat plate was
shaped to form an ellipse and a small pipe with
a slit was buried in it. Paraffin smoke was
supplied into the stream through this slit for
flow visualization (see Fig. 4).

The cooled flat plate, which was made of
transparent vinyl plates, was mounted on the
heated flat plate. Its surface temperature was
kept constant by means of cooling water. The
height of the flow passage was adjusted by the
height of side walls.

To avoid disturbance caused by the measuring
slits, a flat plate was laid above the cooled
flat plate. The distance from this flat plate to the
cooled flat plate was equal to the height of the
flow passage.

Even if the flow has a high velocity, it be-
comes three-dimensional so long as the tempera-
ture difference is large enough to cause the
vortex rolls. For instance, if the temperature
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F1G. 5. Experimental apparatus,

difference is about 60 degC, a flow field along the
heated flat plate, whose main stream velocity 1s
about 3 m/s, becomes three-dimensional near
the rear part of the heated flat plate. However,
we used a low speed flow (U, == 0-6 m/s) in this
experiment to get a stable fully developed flow.

Because of the low speed and because of the
existence of the temperature field, the special
hot-wire anemometer which is shown in Fig. 6
was used to measure flow velocity. The trans-
mitter shown in Fig. 6 consists of a platinum
wire of 50 p diameter which is stretched.normal
to the flow direction and an A.C. current at
50 cycles is supplied to it. The receiver is a fine
platinum wire of 5 p diameter and is heated by
a constant current. The transmitter is fixed, but
the receiver can be traversed in the flow direction
so as to adjust the distance between them.

A heat signal of 100 cycles is added to the
flow which passes the transmitter and this
signal is transported to the receiver by the flow.
The signal is received as a voltage fluctuation
in the receiver. Denoting the voltage applied
tothetransmitter bye, oc sinwt, thesignalvoltage
e, detected by the receiver is proportional to
sin’{wt — (2r/T) (I/u)], where u is the velocity

of the flow, ! is the distance from the transmitter
to the receiver, T = 1/50 and w = 100 #. If we
change the distance, the received signal changes
from e, to e, where ¢, is proportional to

;3 Ov th

Oscilloscope

Transmitier Receiver

Amp.

Receiver, Su platinum wire

Tronsmitter, 50u platinum wire

F1G. 6. Hot-wire anemometer.

sin® {wt — [n/T)(/u) + 2n/T)(Aljw)]}. Ap-
plying e, and e,(e}) to the horizontal and the
vertical deflectors of the oscilloscope, respec-
tively, we observe a Lissajous figure on the
screen.
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If we select I and Al as [(2n/T) (I/u) = (n/2) m]

{m is a positive integer) and [(2n/T)(Al/u) = .

(m/2)], the Lissajous figure for each case becomes
a parabola whose convex direction is reversed.
The velocity of the flow is measured by the
observation of these parabolas. After putting
the receiver at the place which makes a parabola
appear on the screen of the oscilloscope, we
shift it to the new place which again makes a
parabola appear on the screen. If we can measure
the shifted distance Al, the velocity of the flow is
known, using therelation [(27/T) (Al/u) = (n/2)],
as u = 200 Al (1/s).

An increase in m weakens the received signal,
so we used the state of m = 1. In such a state,
the receiver was slightly affected by the wake
of the transmitter. The correction for this wake
was made.

The temperature of the fluid measured by a
copper—constantan thermocouple, made of 01
mm wires, and a potentiometer. Lead wires of
the thermocouple were contained in a stainless-
steel tube of 0-8 mm outer diameter and only
the tip of the thermocouple was exposed. In
order to eliminate the effect of the measuring
slit and to prevent errors due to heat conduction,

the stainless-steel tube was bent to an L-shape.

3.2 Experimental results

3.2.1 The velocity distribution. Measurements
were made to confirm whether a velocity distri-
bution was fully developed or not when there
was no temperature difference, and the result is
shown in Fig. 7. It is clear from Fig. 7 that the
velocity distribution is fully developed at the
measuring station (x = 1550 mm) and there is
no effect attributable to the paraffin smoke.

Experimental results for the flow with vortex
rolls are shown in Figs. 8 and 9. Figures 8 and
9 indicate the velocity distribution in the y-
and z-direction, respectively. The heavy lines
in these figures are analytical values due to
equation (46). Experimental results are in good
agreement with analytical results. Figure 9(b)
indicates the velocity distribution in the middle
plane of the passage. If there existed only the

® Smoke flow rafe/oir flow rate = 0-0125

Re = 682 o =0

B

o

/o/

085

FiG. 7. Fully developed velocity distribution.

e 00

li’a/(,‘i’d)| =469
Re = 513

FiG. 8. Velocity distribution.

first type vortex rolls, this velocity distribution
would indicate a constant value. Because of
the existence of the second type velocity
fluctuation whose pitch is a half of the first type
vortex roll, the velocity distribution is distorted
as is shown in Fig. 9.

3.2.2 The temperature distribution. Figure 10
indicates the temperature distribution of a
flow with no vortex roll. It is shown by this
figure that the temperature distribution is not
fully developed in the range of experimental
Reynolds numbers. But, as is indicated in Fig.
11, the appearance of the vortex rolls accelerates
the development of the temperature distribution.
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F1G. 10. Temperature distribution
(Ra < (Ra)y).

Experimental results for a flow with vortex
rolls are shown in Figs. 12 and 13. Figures 12
and 13 indicate the temperature distribution in
the y- and z-direction, respgctively. The heavy
lines in the figures are analytical values due to

equation (49). The line of dashes in Fig. 12
indicates the distribution of T(y) due to equa-
tion (45), and it is found from this figure that the
temperature gradient 0T /0y reverses itself in
the middle part of the passage. It is seen from
this fact that heat is conducted from the upper
cooled flat plate to the lower heated flat plate
in such a region. As the heat flow from the lower
to the upper flat plate is constant, there must
be a violent convection motion in the middle
of the passage to compensate for the negative
heat conduction. The distribution of T(y)
cannot be measured experimentally, but in the
range of experimental Rayleigh numbers it is
possible to approximate the T(y) distribution
by the central distribution of the vortex roll
(shown by the line connecting open circles).
This distribution does not indicate the reversal
of the temperature gradient, but in the middle
of the passage the temperature gradient de-
creases to near zero. Therefore, it was found
experimentally that the heat is transferred by
convection in the middle part of the passage.
As is shown in Fig. 12, there is a little difference
between the experimental and the analytical
values. This might be caused by the error of
the approximate analytical method. Figure 13
shows the temperature distribution in the
z-direction. It is found from this figure that the
temperature distribution is distorted away from
the sinusoidal distribution by the effect of the
second type fluctuation.

3.2.3 The pitch of vortex rolls. The variation
of A due to the change of d, Re and Ra is investi-
gated experimentally and the result is shown in
Fig. 14. Figure 14 indicates that, in the range of
d < 15 mm, A depends only on the value of d,
and, in the range of d > 15 mm, 4 remains
constant, unaffected by Re, Ra and d. The
relation between d and A in the range of d <
15 mm is expressed as A = 2:0 d. This relation
agrees with the one that was predicted by the
linearized theory.

In the case of a flow along a heated horizontal
flat plate, that is, in the case of the height d of
the passage equal to infinity, it is inferred from
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®0o0 vortex roll in the passage and the flow is two-
dimensional. But in the range of Ra > (Ra),
Ro/(Ra) = 4-69 the vortex rolls appear and the flow becomes
Mol Re = 513 three-dimensional. Heat due to convection
05 rapidly increases with Rayleigh number and the

Nusselt number becomes larger than 1.
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In the range of Ra < (Ra); there exists no FIG. 13. Temperature distribution.
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Fi1G. 15. The Nusselt number.

_ 4. CONCLUSION .
By investigating the forced convective heat

transfer between horizontal flat plates, when the
lower plate is heated and the upper is cooled
under the condition of a steady fully developed
flow, we obtained the following conclusions.

(a) A sufficiently large temperature difference
between the flat plates causes a three-dimen-
sional flow. It was clarified by the experiment
and analysis that this three-dimensional charac-
ter was caused by vortex rolls whose axes were
parallel to the flow direction.

(b) The Navier-Stokes equations and the
energy equation for a three-dimensional flow
were solved by an approximate method taking
into account the nonlinear effect of the fluctua-
tions. In the process of solving these equations,

tion, the pitch of the vortex rolls and the
Nusselt number were obtained. These experi-
mental results were compared with analytical
results, and it was found that they were in good
agreement.
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Résumé—On peut considérer comme bidimensionnel I'écoulement entiérement établi et le champ de
température entre deux plaques planes horizontales (lorsque la plaque inférieure est chauffée et la plaque
supérieure est refroidie). Cependant, lorsque la différence de température entre ces plaques planes dépasse
un valeur critique, on observe I'apparition de tourbillons en rouleaux dont les axes sont paralleles a la
direction de 1’écoulement. En conséquence, les champs de vitesse et de température sont complétement
modifiés par ces tourbillons en rouleaux et ont un caractére tridimensionnel. Les équations de la quantité
de mouvement et de [’énergie pour de tels champs sont non-linéaires. Ces équations sont résolues approxi-
mativement en se basant sur les bilans d’énergie et de production d’entropie des tourbillons en rouleaux.
Afin d’obtenir des résultats théoriques, on a mesuré les distributions de vitesse et de température de I’écoute-
ment tridimensionnel. On trouve que les résultats théoriques sont en bon accord avec les résultats ex-
périmentaux. )

Zusammenfassung—Fiir voll ausgebildete Strémungen und Temperaturfelder zwischen zwei ebenen
waagerechten Platten (wobei die untere Platte beheizt und die obere gekiihlt ist), kénnen zweidimensionale
Verteilungen angenommen werden. Wird jedoch die Temperaturdifferenz zwischen diesen Platten iiber
einen kritischen Wert gesteigert, so erscheinen zwischen den ebenen Platten Wirbelrollen, deren Achsen
parallel zur Stromungsrichtung liegen. Somit werden die Stromungs- und Temperaturfelder von diesen
Wirbelrollen beeinflusst und nehmen einen dreidimensionalen Charakter an. Die Bewegungs- und Ener-
giegleichungen dieser Felder sind nichtlinear. Diese Gleichungen sind auf Grund der Energie- und Entro-
piebilanz niherungsweise gelost. Um theoretische Ergenisse zu erhalten, wurden die Geschwindigkeits-
und Temperaturverteilungen der dreidimensionalen Strémung ausgemessen. Die theoretischen Ergebnisse
zeigten gute Ubereinstimmung mit den experimentallen.

Annoranaa—IIps NONHOCTEIO pPa3BUTHX TeYeHMAX M HAMMYMM TeMIEPATYpHHX moJei
MKy FODHBOHTAJBHHIMM IJIOCKHMM IIACTHHAMM (KOTa HILKHAA IUIACTHHA HArpeTa, a
BePXHAA OXJAHKEHa) IPOLECcC TeMIONePeH0Ca MOKHO GHI0 OH CYHTATh ABYMepHHM. OAHAKO
IpH yBeAWYeHMH DAsHOCTH TeMIIEPATYP Me:Ay OSTHMH IJIACTUHAMM BHINE KPHTHYECKOrO
SHAUeHHA BOBHHKAIOT BPANIEHHMA, OChb KOTODHX IlapaiieibHa HANMpPABIEHHIO TedeHHA. IIox
BIMAHHEM 3THX BUXPeBHX Bpau(eHuil TeMIepaTypHOe [10Je NOJIyIaeT TPeXMepPHHH XapaKrep.
YpaBHeHNA KOAMYeCTBA NBHKEHHA M 9HEPrMH [IA MONOOHHX Nojeit ABIAITCA HelauHel-
unMn. Takue ypasHeHus pemalorcA HPHGMIKEHHO HA OCHOBe (ajaHCA 9HEPrHH M BO3pacTa-
HAA DHTPONIMM BHXPeBWX BpameHHH. [[iA NMOATBEPAEHHA TeOPeTHYECKHX pe3yJIbTATOB
H3MepAETCA pacmpefielleHHe CKOPOCTH M TEMIEPATYPH TpexmepHoro moroka. Hafinewo, uro
TeOpeTHYECKHEe Pe3yJbTATH XOPOIIO COIJIACYIOTCA ¢ 9HCIePHMEHTAILHEIMH .



